Numerical solutions for large sparse quadratic eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Numerical methods for large eigenvalue problems
Over the past decade considerable progress has been made towards the numerical solution of large-scale eigenvalue problems, particularly for nonsymmetric matrices. Krylov methods and variants of subspace iteration have been improved to the point that problems of the order of several million variables can be solved. The methods and software that have led to these advances are surveyed.
متن کاملA numerical method for quadratic eigenvalue problems of gyroscopic systems
We consider the quadratic eigenvalues problem (QEP) of gyroscopic systems ðlMþ lGþ KÞx 1⁄4 0, where M 1⁄4 M>;G 1⁄4 G> and K 1⁄4 K> 2 R n with M being positive definite. Guo [Numerical solution of a quadratic eigenvalue problem, Linear Algebra and its Applications 385 (2004) 391–406] showed that all eigenvalues of the QEP can be found by solving the maximal solution of a nonlinear matrix equatio...
متن کاملGeneral Solutions for a Class of Inverse Quadratic Eigenvalue Problems
Based on various matrix decompositions, we compare different techniques for solving the inverse quadratic eigenvalue problem, where n× n real symmetric matrices M , C and K are constructed so that the quadratic pencil Q(λ) = λM + λC + K yields good approximations for the given k eigenpairs. We discuss the case where M is positive definite for 1≤ k ≤ n, and a general solution to this problem for...
متن کاملThe Numerical Treatment of Large Eigenvalue Problems
This paper surveys techniques for calculating eigenvalues and eigenvectors of very large matrices.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1995
ISSN: 0024-3795
DOI: 10.1016/0024-3795(93)00318-t